Se lo pedire al amigo GOOGLE
:rock::rock::rock::rock::rock::rock::rock::rock::rock::rock::rock::rock::rock::rock::rock:
Esto es lo que he encontrado:
Drag is proportional to the square of speed, and to the size of the motorcycle's frontal area. The constant of proportionality is called the drag coefficient, or C[SUB]
D[/SUB], and is primarily a function of shape. It indicates which shape is superior, but does not define the total aerodynamic drag by itself. The product of the drag coefficient and the frontal area, A, gives the drag. A larger motorcycle with a lower drag coefficient may be faster than a smaller, poorly-shaped motorcycle with a larger drag coefficient. The best measure of aerodynamic drag is the parameter known as the drag area, CDA, which has units of square feet. This can be interpreted as the size of a flat plate that has the same drag as the motorcycle.
Click to View Gallery
Power vs. Drag Using the C...
read full caption
Click to View Gallery
Power vs. DragUsing the C[SUB]D[/SUB]A calculated from the air drag at a single tunnel speed, we determined drag for a speed range from zero to 225 mph, indicating the engine power needed to overcome air drag. Rolling resistance also must be considered. The sum of the air and rolling drag forces multiplied by the speed gives us the power figure needed to pull that speed. Repeating the multiplication across our 225 mph speed range demonstrates how the Hayabusa's superior aerodynamics require less power than the ZX-12R to achieve a given speed.
A lower figure means less drag, and the Hayabusa recorded a C[SUB]
D[/SUB]A of 3.37 ft[SUP]
2[/SUP] (0.313 m[SUP]
2[/SUP]), about 8 percent less than the ZX-12R's figure of 3.67 ft[SUP]
2[/SUP] (0.341 m[SUP]
2[/SUP]).
Roughly 90 percent of an engine's power is used to overcome aerodynamic drag at high speeds, while the remaining 10 percent works against rolling resistance. The exact rolling resistance is difficult to determine, and the relative efficiency of each bike's ram-air system is also unknown. But it is possible to calculate a power vs. speed graph using the drag figures measured in the wind tunnel (see above). To achieve 187.5 mph, the Hayabusa needs 147.6 horsepower to overcome drag alone; the 12R needs 161.3 horsepower for the same speed. However, using the wind tunnel data, test weights, our road-test dyno figures for horsepower and a rolling-resistance figure, Cooper calculated that the ZX-12R would have a maximum speed of 187.0 mph and the Hayabusa 187.7 mph. The effect of wind can vary the result, usually decreasing speed unless it's a tailwind. Sidewinds during a test can decrease top speed as a result of the higher drag at yaw. This calculation doesn't include any ram-air effects, but essentially, the bikes have similar speed potential, although the Suzuki has an edge. One thing is certain--the Kawasaki doesn't need an electronic governor to limit its top speed.
Read more:
http://www.sportrider.com/tech/146_0106_aero/viewall.html#ixzz2KFTZa5lw
Como diria la Solitaria
mareeee SI SUPIERA INGLES......................
:rock::rock::rock::rock::rock::rock::rock::rock::rock::rock::rock::rock: